Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 2691-2708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510793

RESUMEN

Purpose: Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. Methods: NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. In vivo, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. Results: These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H2O2-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 µg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Conclusion: Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.


Asunto(s)
Síndromes de Ojo Seco , Grafito , Polietilenos , Polipropilenos , Puntos Cuánticos , Ratones , Humanos , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Grafito/química , Puntos Cuánticos/química , Nitrógeno/química , Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Poloxámero , Síndromes de Ojo Seco/tratamiento farmacológico , Inflamación , Soluciones Oftálmicas , Péptidos
2.
Mol Carcinog ; 63(5): 926-937, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380957

RESUMEN

Early treatment of retinoblastoma (RB) has significantly improved clinical outcomes. N6-methyladenosine (m6A) methylation is crucial for cancer progression. Thus, we investigated the role of FTO-dependent demethylation in RB and its underlying mechanisms. The biological behavior of RB cells was analyzed using cell counting kit-8, colony formation analysis, transwell assay, flow cytometry, and western blot analysis. m6A modification was evaluated using methylated RNA immunoprecipitation and dual-luciferase reporter assays, and E2F3 stability was assessed using Actinomycin D. The roles of FTO and E2F3 were also elucidated in vivo. These results indicated that FTO was highly expressed in RB cells with low m6A levels. FTO knockdown inhibited RB cell growth, migration, invasion, and epithelial-mesenchymal transition and arrested the cell cycle at the G0/G1 phase. Mechanistically, FTO interference promoted m6A methylation of E2F3, which was recognized by YTHDF2, thereby reducing mRNA stability. E2F3 overexpression partially rescued the effects of FTO knockdown on biological behavior. Moreover, FTO knockdown reduced tumor weight, tumor volume, ki67 expression, and tumor cell infiltration by mediating E2F3. Taken together, FTO silencing inhibited the malignant processes of RB by suppressing E2F3 in an m6A-YTHD2-dependent manner. These findings suggest that FTO is a novel therapeutic target for RB.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Factor de Transcripción E2F3 , Neoplasias de la Retina , Retinoblastoma , Humanos , Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Ciclo Celular , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Retinoblastoma/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Bioengineered ; 13(6): 14357-14367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758265

RESUMEN

Epithelial-melancholy transition (EMT) is the main cause of organ fibrosis and a common pathogenetic mechanism in most cataracts. This study aimed to explore the molecular mechanism of Toll-like receptor (TLR)-3 in the occurrence and development of post-cataract EMT and to provide new ideas for the prevention and treatment of posterior capsule opacification (PCO). In the presence or absence of TLR3, the human lens epithelial cell (LEC) line, SRA01/04, was treated with the transforming growth factor (TGF)-ß2. Cell counting kit-8 (CCK-8) and Transwell assays were used to analyze the cell proliferation, migration, and invasion. The expression levels of proteins and RNAs were detected by western blotting and quantitative polymerase chain reaction (qPCR) experiments. Functional gain and loss studies showed that TLR3 regulates the proliferation, migration, and invasion of LECs and EMT induced by TGF-ß2. Moreover, TLR3 regulates the expression of Jagged-1, Notch-1, and Notch-3 These findings indicate that TLR3 prevents the progression of lens fibrosis by targeting the Jagged-1/Notch signaling pathway to regulate the proliferation, migration, and invasion of LECs, and TGF-ß2-induced EMT. Therefore, the TLR3-Jagged-1/Notch signaling axis may be a potential therapeutic target for the treatment of fibrotic cataracts.


Asunto(s)
Opacificación Capsular , Receptores Notch , Receptor Toll-Like 3 , Opacificación Capsular/genética , Opacificación Capsular/metabolismo , Opacificación Capsular/patología , Movimiento Celular/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Fibrosis , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Factor de Crecimiento Transformador beta2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...